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SUMMARY

Determining ground-truth precipitation amounts is a complex endeavor. Rainfall is extremely 

temporally and spatially variable, even across small distances and co-located gauges. While this 

can be in part due to natural variability, differences in precipitation measuring techniques and 

ensuing errors can add to differences observed. Conventional rain gauges are subject to a wide 

array of errors, which are often exacerbated by field conditions like high winds. They generally 

require specific configurations, plus regular cleaning, leveling, and calibration, and are prone to 

compounding errors if these specifications are not met and maintained. 

A fickle, complicated, and labor-intensive measurement setup presents challenges to anyone 

seeking accurate data to inform irrigation decisions, and a streamlined operation to carry 

them out. Arable’s simple Mark 2 device, dynamic data, and unique machine learning platform 

introduce a novel approach to rainfall with proven accuracy against gold-standard sensing. Let’s 

explore the state of precipitation measurement today, and see how Arable works to improve it.

• Rainfall is complex, variable, and highly subject to subtle shifts in microclimate.

• Most rain gauge accuracy claims are validated in a controlled laboratory setting.

• Field weather conditions play a significant role in rain gauge measurement errors.

• Most rain gauges require regular maintenance and calibration to maintain accuracy.

• Rain measurement with fewer moving parts and machine learning models reduce errors 

significantly.



Rainfall is generally the most 

variable hydrologic element over any 

space, and its characterization is one of 

the most commonly needed and difficult 

to rectify. Rainfall has multiple modes 

for non-stationarity—the small-scale 

variability induced by processes like 

cloud formation, droplet formation, 

and wind; and larger scale variability 

induced by the movement of rainfronts, 

local and regional geography, and, in 

some cases, plant canopies.

Comparing very localized data, such 

as what you receive from the Arable Mark 

2, to either a forecast or a distant weather 

station may show some of this variability. 

Forecasts are usually looking at the likely 

conditions over a large area—individual 

points may see substantially more or less 

rainfall. The same is true for the nearest 

weather station; many weather stations 

in the US are at airports with conditions 

that may be quite different from the 

ones you see in your fields. The spatial 

variability can be remarkable, as research 

has demonstrated:

•  Up to 100% variability between 

rain gauges within 500 meters of 

each other ( Jensen and Pedersen 

2005)

•  Up to 26% (or more) variability 

between gauges within 250 meters of 

each other  (Pedersen et al. 2010)

•  Variability is strongly influenced 

by the type of rainfall that is 

occurring (Emmanuel et. al. 2012)

You may also witness some spatial 

variability when comparing the rainfall 

among your devices if you have them 

in many fields. The ultimate value of a 

network of devices is that you get the 

truest picture of your weather conditions.

Figure 1. There is significant spatial variability in rainfall even across small distances (Mokondoko et. al. 2018).
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This demonstrates that it is common 

to see rainfall variability among rain 

gauges that have some spatial spread to 

them. But what about rain gauges that 

are right next to each other (we refer to 

this as “co-located”)? It has been found 

that rain gauge measurements taken by 

identical gauges located a few feet apart 

have experienced differences as much 

as 20% (Curtis & Burnash 1996). This 

somewhat baffling result is due to the 

natural variability of rainfall.

A two-year study conducted by the 

World Meteorological Organization 

(WMO) in Italy (E. Vuerich et. al. 2009) 

rigorously tested 25 well-known and 

high-quality rain gauges, including 

tipping buckets and weighing gauges, as 

well as optical and impact disdrometers. 

This was a controlled experiment where 

all instruments were placed at the same 

height in an open field without any 

obstructions.

Figure 2. The field test site in Vigna di Valle, Italy (E. Vuerich et. al. 2009).

Figure 3. Average relative errors over the whole measurement range of all instruments analyzed (E. Vuerich et. al. 2009).
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The study found significant rainfall 

variability among the rain gauges, with 

the worst instruments presenting average 

errors that underestimated by more 

than 20% and overestimated by more 

than 30% (keep in mind that these were 

average errors; there were 5th- and 95th-

percentile outliers that underestimated 

by more than 90% and overestimated by 

more than 70%). Even among the best 

instruments, there was still considerable 

variability, with more than half their 

measurements presenting errors greater 

than 5%. These results are consistent 

with other findings in that they show 

variability, even among co-located rain 

gauges of the highest quality that were 

calibrated and well-maintained.

This might seem contradictory 

to the general understanding of rain 

gauge accuracies, as most product 

specifications often quote rainfall 

accuracy at around 5% or less. But these 

metrics are often derived from laboratory 

testing conditions and thus do not take 

into account important factors like wind 

or varying rainfall types and intensities 

typical of field conditions. These weather 

conditions play a significant role in 

precipitation errors, and so the true 

accuracies of rain gauges are often much 

larger when deployed in the field.

The WMO published an extensive 

guide covering the measurement of 

meteorological variables, including 

precipitation. According to the WMO, 

rain gauges are subject to many different 

sources of error, yielding amounts less 

than the actual precipitation reaching 

the ground by up to 30% or more (World 

Meteorological Organization 2018). The 

magnitude of these errors are highly 

dependent on weather conditions, 

especially wind speed and precipitation 

type and intensity, and can be caused by:

1. Systematic wind field 

deformation above the gauge 

orifice (2-50%) —see Figure 4

2. Wetting loss on the internal walls 

of the collector as well as wetting 

loss in the container when it is 

emptied (1-15%)

3. Evaporation from the container 

(0-4%)

4. In- and out-splashing of water  

(1-2%)

5. Systematic mechanical and 

sampling errors, and dynamic 

effects errors (5-15%)

6. Random observational and 

instrumental error

Instrument placement and site 

geography are important factors that can 

potentially exacerbate the inconsistencies 

among co-located rain gauges. For 

example, differing gauge heights or 

variable protection relative to different 

wind directions (e.g., nearby vegetation 

that effectively blocks wind from certain 

directions) yield different wind speeds. 

This, in turn, will impact the magnitude 

of errors due to aerodynamics around 

the gauge orifice, as shown in Figure 4. 

This effect has dramatic consequences 

for precipitation measurement accuracy; 

one study showed that wind-induced 

undercatch is on the order of 1% for 

each mile per hour of wind at the gauge 

orifice (Larson & Peck 1974). The support 

documentation for commonly available 

tipping bucket rain gauges recommends 

a 2-foot mounting height within a clear 

field of view (Davis Instruments 2009), 

while other commercial sources warn that 

“siting the gauge at any significant height 

will expose the gauge to wind effects and 

hence typically cause significant under-

recording of rainfall” and “even residual 

objects in the vicinity of the gauge will 

potentially have some impact on recorded 

rainfall” (Prodata Associates Ltd 2020).

In addition to being subject to the 

sources of error listed above, many 

rain gauges are sensitive to leveling 

errors and require regular cleaning and 

calibration intervals. If the recommended 

specifications are not met, this can 

further reduce the efficacy of the system 

and compound on errors already present. 

For example, gauge manufacturers warn 

that “accuracy degrades significantly if 

the unit is not level” (Davis Instruments 

2009) and “cleaning as often as necessary 

is vital for rainfall accuracy” (Prodata 

Associates Ltd 2020). In addition, the 

system may require recalibration, as 

Figure 4. Different shapes of standard 

precipitation gauges. The solid lines show 

streamlines and the dashed lines show the 

trajectories of precipitation particles. The first 

gauge shows the largest wind field deformation 

above the gauge orifice, and the last gauge the 

smallest. Consequently, the wind-induced error 

for the first gauge is larger than for the last gauge 

(World Meteorological Organization 2018).
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many rain gauges often do. The necessary 

dynamic calibrations are often not 

performed for years after they are due, 

and so errors induced by fouling and 

drift in the tipping mechanisms (often 

induced by the expansion of water) are 

compounded. The drift from calibration 

can be as much as 3-8% within the first 

year in the field, although sensors vary in 

their resistance to drift (United Kingdom 

Environment Agency 2004).

Arable co-founder Adam Wolf 

summarized conventional rain gauges 

succinctly: “The main problem with 

these is they fill up with schmutz, they 

lose their calibration, they lose water 

from too little rain (evaporation), too 

much rain (tipper can’t keep up) and 

wind, which blows rain out due to 

the aerodynamics.” Hence, one of the 

design goals of the Arable Mark 2 was 

to avoid the pitfalls of tipping buckets 

and other gauges —bulky, moving parts; 

accumulation of debris; insensitivity to 

small rain events; wind-sensitivity; etc. 

Arable’s solution to measuring 

precipitation is a novel approach that 

uses a patented acoustic disdrometer 

to capture the sound of rainfall (Wolf 

et al. 2018). The disdrometer effectively 

“listens” for raindrops to hit the top 

dome. As audio data is collected, it is 

analyzed to determine whether the 

source of sound is rainfall and filters 

anything else out. The rainfall sounds 

are transformed to energy bins, which 

are then mapped to individual rain 

droplet sizes. The accumulation and size 

characterization of each droplet is what 

ultimately generates an overall rainfall 

rate and accumulated rain measure. 

An integral part of this process is 

the application of both classification 

and regression machine learning 

(ML) models that enhance the rainfall 

estimates. These models are built 

and trained on data collected by the 

Arable Calibration & Validation (Cal/

Val) network, which includes 36 

(and counting) field sites around the 

world and generates millions of data 

points every month. These field sites 

are equipped with gold-standard, 

research-grade instrumentation like 

the second-generation OTT Parsivel2 

laser disdrometer (Nemeth and Beck 

2011). We not only use this data to train 

our models, but also to rigorously test 

their performance across variable field 

conditions and climate zones. In Figure 

5 below, we see a full year of data where 

a Mark 2 is deployed next to an OTT 

Parsivel2. The Mark 2 tracks closely over 

the entire year, with an accumulated 

percent difference of only 1.5%.
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Figure 5. Accumulated precipitation from a co-located Arable Mark 2 and OTT Parsivel2 at one of our Cal/Val field sites.
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This global calibration and 

validation strategy has achieved 

excellent results, often outperforming 

commercial-grade weather stations 

(see the Mark 2 Product Sheet for a 

more complete list of measurements 

and their corresponding accuracy 

ratings). Furthermore, this strategy 

provides continuous improvement of 

the  ML models over time as additional 

training data is collected through 

the Cal/Val network. Our regular 

software releases contain automated 

ML model updates that increase our 

measurement accuracies and maximize 

performance across all of our feature 

offerings—without needing to replace 

the units with new hardware. It is a 

genuinely flexible and sustainable 

way of developing and building 

technologies, and allows us to do it at a 

more affordable price. Our technologies 

will continue to evolve and further 

improve over time by leveraging Arable’s 

dynamic data and ML platform. 

For best results, we recommend that 

customers who are evaluating Arable 

rainfall data against other gauges to 

consider the distance between sensors, 

differences in wind exposure, and the 

time since any in-house rain gauges 

were cleaned, leveled, and calibrated. 

Even then, as we have shown, the 

spatial variability of rainfall across small 

distances and even within co-located 

setups can be remarkable, and common 

precipitation measurement errors may 

never be entirely removed. If you would 

like to read more about the common 

pitfalls that can occur when attempting 

to compare two different rainfall sources 

and related errors, please see this paper 

and this resource.
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