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INTRODUCTION

Arable is a data and analytics company 

that powers better decisions in agriculture 

through an integrated approach to hardware, 

software, and data science. At the center of 

Arable’s solution is the Arable Mark 2, an 

all-in-one weather station and crop monitor 

that collects climate and plant data for 

actionable insights in all growing conditions. 

The device features a rugged design for field 

durability, global cellular connectivity, and 

a robust sensor suite that measures over 40 

plant and climate data streams. It includes an 

acoustic disdrometer for measuring rainfall, 

as well as upwelling and downwelling 

shortwave radiometers, longwave radio-

meters, 6-band spectrometers, and GPS.

The design and hardware components 

of the Mark 2 were chosen with an eye 

towards accuracy and durability in the field, 

but also with an understanding that the 

core measurements—as well as any derived 

agronomic features—would be enhanced by 

applying machine learning (ML) solutions. 

Machine learning falls within the field 

of data science and broadly refers to the 

study of computer algorithms that build 

mathematical models based on sample data, 

known as “training data,” in order to make 

predictions or decisions [1]. In particular, 

Arable’s use of ML focuses on the calibration 

of core measurements to improve accuracy 

as well as leveraging predictive analytics for 

relevant agronomic features. 

This paper details how our ML solutions 

improve core measurements and how we 

validate their performance in the field. This 

validation process entails co-locating Mark 

2 devices with gold-standard, research-grade 

reference instruments located at AmeriFlux 

sites [2] or similar in North America, 

Europe, and Australia. These co-located 

deployments allow us to compare Mark 2 

measurements with localized ground truth 

to establish true accuracy metrics within 

fields across a range of climate zones. We 

also co-locate with two commercial-grade 

weather stations, the Davis Vantage Pro2 [3] 

and METER ATMOS 41 [4], to determine 

how the Mark 2 compares to similar devices 

on the market.

In the Method section, we outline our 

process for training ML models and testing 

their performance using both the reference 

instruments and commercial-grade 

devices. In the Results section, we show 

sets of comparative plots and performance 

metrics for each of the core measurements 

and provide an interpretation of those 

results. In the Conclusion section, we 

summarize the results and discuss how 

the Mark 2 and overall Arable system will 

improve over time using our ML solutions.
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METHOD

Arable’s ML models require training 

data to build them, as well as testing data 

to validate their performance. As such, 

Arable has invested heavily in collecting 

vast amounts of this reference data: to 

date, Arable has collected over 70 million 

data points across 45 measurements at 35 

different sites. These controlled research 

sites collectively make up our calibration/

validation network, referred to as Arable’s 

“Cal/Val network.”

Through the Cal/Val network, Arable 

leverages in situ, high resolution, 

research-grade datasets for Mark 2 sensor 

calibrations and analytics. This effort 

started in late 2018 with the collection of air 

temperature and rainfall data and, in 2019, 

expanded to include measurements across 

the full sensor suite. The network currently 

covers 11 Köppen-Geiger climate zones [5] as 

shown in Figure 1 below. The locations were 

selected based on data quality, maximum 

geospatial spread, and ability to work 

with Arable. This network of high-quality 

data streams not only allows for regular 

calibration updates to the Mark 2 system, but 

also enables us to engineer sensor hardware 

with shorter development timelines, test new 

features, and jump-start novel analytics with 

third-party sensor integrations.

Figure 1. Map of Arable’s Cal/Val network. Blue dots indicate the location of specific sites, with Köppen-Geiger climate zones differentiated by color.
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The Cal/Val network is associated with 

a wide range of institutions that provide 

us with data sampled using high-accuracy, 

high-precision instruments. The NASA 

Goddard Space Flight Center [6] is a world-

class research and development center in 

precipitation science. This is one of four sites 

where the Mark 2 is co-located with a laser 

disdrometer, providing access to radar and 

disdrometer precipitation data for rainfall 

calibration. The National Renewable Energy 

Laboratory (NREL) [7] is another world-class 

research site known for spectroradiometry. 

We have worked with NREL since 2017, 

validating our shortwave, longwave, and 

direction of incident light measurements. A 

large percentage of our partners are members 

of the AmeriFlux Network [2], which is 

instrumented with gold-standard sensors 

for climate and ecological research. Arable 

also partners with researchers managing 

meteorological towers from universities and 

other meteorological networks, including 

the University of Hawaii’s Lyon Arboretum, 

University of Florida’s Field and Fork, 

Rutgers University, and the Atmospheric 

and Oceanic Sciences department at the 

University of Wisconsin. The network spans 

four levels of specialized data:

(1)  Rainfall. Drop size and velocity 

distributions and total rainfall 

measured with laser disdrometers. 

(2)  Meteorology. Temperature, 

humidity, pressure, rainfall, and 

wind at scientific-grade quality. 

(3)  Spectroradiometry. Broadband 

shortwave and longwave radiation, 

as well as highly resolved 

environmental spectrometry, from 

gold-standard sensors.

(4)  Eddy covariance measurements.  

Whole-ecosystem exchange of 

water vapor (evapotranspiration), 

carbon dioxide (photosynthesis 

and respiration) and radiation 

(shortwave and longwave energy) 

along with weather drivers.

We use the data collected from these Cal/

Val sites to align Mark 2 measurements with 

gold-standard reference measurements over 

time. This provides us with continuous data 

streams across multiple measurements, 

allowing us to identify any discrepancies 

between raw Mark 2 recordings and 

localized ground truth. This data is used to 

train ML models that “learn” the corrected 

or calibrated measurements coming from the 

gold-standard reference instruments. The 

ML models are then applied to incoming 

data in real time to obtain a more accurate 

and reliable core measurement base.

This process is iterative in the sense that 

these models are updated on a regular basis 

as we collect more data. As the models 

improve with more training data, they are 

able to discern more complex patterns and, 

in turn, produce predictions that are better 

and more accurate. This is the true power 

of ML: we can keep improving results by 
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adding data to the models and releasing 

new software without having to update  

the hardware. 

To ensure the highest level of accuracy, 

we not only use our Cal/Val network to 

build the models, but also to extensively test 

and confirm their continued performance. 

This paper provides a glimpse into the 

world of this validation process, with a 

focus on how the Mark 2 compares against 

other commercial weather station devices 

using the reference devices as a baseline for 

performance.

For the results discussed in this paper, 

we use data from two Cal/Val sites, which 

are named by location: Hilo (in Hawaii, 

USA) and Santa Rosa (in California, 

USA). At both of these sites, we use an 

OTT Parsivel² [8] as the gold-standard 

reference for precipitation. This is a high-

quality laser disdrometer that counts water 

droplets and classifies them according 

to their diameter and velocity, thereby 

deriving a precise precipitation rate 

and amount. At the Santa Rosa site, we 

additionally use a Vaisala HUMICAP® 

HMP155 [9] with a MeteoShield (naturally 

aspirated helical radiation shield) [10] 

as the reference for air temperature and 

relative humidity, along with a Kipp & 

Zonen CNR4 net radiometer [11] as the 

reference for solar radiation. These are 

research-grade instruments that provide 

meteorological inputs for studies at the 

finest research facilities around the world.

In addition, we chose to co-locate with 

two commercial-grade weather stations, 

Davis Vantage Pro2 [3] and METER ATMOS 

41 [4], at each of these sites. The Vantage 

Pro2 is a conventional weather station 

that provides some agronomically-relevant 

features such as evapotranspiration. The 

ATMOS 41 is a similarly-priced weather 

station that is one of several offerings from 

METER in their line of environmental 

solutions. At both sites, the devices are 

positioned at a distance of 1-2 meters apart 

from each other, at a two-meter height 

above ground level. They are cleaned 

regularly and maintained according 

to manufacturer specifications. In the 

following section, we provide an in-depth 

analysis of the performance of these devices 

across a variety of measurements.
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RESULTS
This section compares the Arable Mark 2 to both the 
Davis Vantage Pro2 and METER ATMOS 41 across the 
following measurements: 

Precipitation
Air temperature
Relative humidity/vapor pressure deficit, as a 
substitute for relative humidity since the ATMOS 41 
does not provide relative humidity directly. 

Three metrics are used to evaluate performance: 

MAE: Mean Absolute Error

RMSE: Root Mean Square Error

MBE: Mean Bias Error

All results were computed on an hourly timescale, noting 
that for precipitation an accumulated percentage error 
is also computed to demonstrate how errors compound 
over time.
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PRECIPITATION

In Figures 2 and 3 below, we show 

precipitation amounts for the Mark 2, 

Davis Vantage Pro2, and METER ATMOS 

41 (y-axis) versus the gold-standard 

reference OTT Parsivel² (x-axis). Each 

point corresponds to an hourly value and 

the black identity line shows where the 

precipitation amounts would be equal 

(no error or discrepancy from the gold-

standard reference). Points falling above 

or below that line correspond to instances 

of overestimation and underestimation of 

precipitation, respectively, noting that the 

further the point falls from the line, the 

larger the error. In contrast, a tight scatter 

centered about the line represents minimal 

errors and a close match to the gold-

standard reference.

Figure 2. Precipitation comparison at the Hilo site using data from August 2020 through October 2020.

Figure 3. Precipitation comparison at the Santa Rosa site using data from April 2020 through June 2020.
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As seen in Figure 3, the ATMOS 41 has 

the lowest hourly errors across all metrics 

with the exception of MBE at the Santa 

Rosa site, where the Mark 2 has zero bias 

on average. The Vantage Pro2 consistently 

underestimates, most evident at the Santa 

Rosa site where the data points are clearly 

off-center producing an MBE of -0.21 mm. 

In this context, MBE can be considered 

the most important metric since it is often 

of interest to understand how the errors 

compound over time. For this reason, we also 

plot the accumulated precipitation for the time 

frames studied, as shown in Figure 4 above. 

The results of Figure 4 are consistent 

with those of Figure 3 in that the overall 

percentage errors match what we would 

expect given their corresponding MBEs. At 

the Santa Rosa site, the MBEs are ranked 

from best to worst as follows: Mark 2 (0 

mm), ATMOS 41 (0.04 mm), and Vantage 

Pro2 (-0.21 mm); meanwhile, the percentage 

errors follow the same ranking: Mark 2 

(0.53%), ATMOS 41 (16.04%), and Vantage 

Pro2 (30.44%). The results from Hilo can be 

broken down in a similar manner with the 

Mark 2 and ATMOS 41 swapping first and 

second place. At both sites, the Vantage Pro2 

does not seem to be as accurate, due to its 

trend of underreporting.

This exemplifies some of the common 

issues that arise when measuring precipitation 

with traditional instrumentation. The  

Vantage Pro2 records precipitation using a 

conventional tipping bucket, which is one 

of the most common methods used today. 

However, even though widely used, this 

method—and rain gauges in general—are 

subject to many different sources of error, 

yielding amounts less than the actual 

precipitation reaching the ground by up 

to 30% or more, according to the World 

Figure 4. Accumulated precipitation comparison using the same data as in Figures 2 and 3.
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Meteorological Organization (WMO) 

[12]. The magnitude of these errors are 

highly dependent on weather conditions, 

especially wind speed and precipitation 

intensity, and can be caused by [ibid.]:

Systematic wind field deformation 

above the gauge orifice (2-10%)

Wetting loss on the internal walls of 

the collector as well as wetting loss 

in the container when it is emptied  

(2-15% in summer and 1-8% in winter)

Evaporation from the container (0-4%)

In- and out-splashing of water (1-2%)

Systematic mechanical and 

sampling errors

Dynamic effects errors (5-15%)

Random observational and 

instrumental errors 

 Arable’s solution to measuring 

precipitation is an entirely novel approach 

that avoids some of the traditional sources 

of error described above. The Mark 2 

uses a patented acoustic disdrometer that 

captures the sound of rainfall [13]. The 

process of deriving precipitation amounts 

can be broken into two main steps:

1.  Audio data is collected and 

analyzed to determine whether 

the source of sound is rainfall, or 

something else.

2. If determined to be rainfall, the 

audio data is transformed such that 

individual droplets are identified, 

binned according to an energy 

range scheme, and then mapped 

to a corresponding diameter bin. 

From the distribution of droplets 

across diameter bins, we can derive 

a total precipitation amount.

Both steps in this process are enhanced 

by using classification and regression 

ML algorithms that enable us to more 

accurately and consistently arrive at the 

correct precipitation amount. Although 

these models have already achieved 

significant success, often outperforming 

other commercial-grade weather stations, 

they will continue to evolve and further 

improve over time by leveraging Arable’s 

dynamic data and ML platform.
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AIR TEMPERATURE

Figure 5 shows air temperature for the 

Arable Mark 2, Davis Vantage Pro2, and 

METER ATMOS 41 (y-axis) versus the 

reference Vaisala HUMICAP® HMP155 

with helical radiation shield (x-axis).

Figure 5. Air temperature comparison at the Santa Rosa site using data from October 2019 through October 2020.

As seen from Figure 5, all three devices 

perform very similarly across the three 

metrics, with MAE ranging from 0.16o C 

(Vantage Pro2) to 0.3o C (Mark 2). Notably, 

the 0.03o C difference between the Mark 2 

and ATMOS 41 is negligible in terms of any 

physical significance. Furthermore, with 

all MAEs at or below 0.3o C, all devices 

exhibit sufficiently accurate temperatures, 

with errors that are unlikely to have a 

negative impact on agronomic applications. 

Also important to note is that at specific 

temperature ranges, these results can shift 

slightly. For example, at and near freezing 

temperatures, the Mark 2 MAE is only 0.14o 

C, while the Vantage Pro2 and ATMOS 41 

MAEs are 0.17o C and 0.32o C, respectively.
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RELATIVE HUMIDITY/VAPOR PRESSURE DEFICIT

Figure 6 shows relative humidity for 

the Arable Mark 2 and Davis Vantage 

Pro2 (y-axis) versus the reference Vaisala 

HUMICAP® HMP155 with helical 

radiation shield (x-axis). As seen from the 

figure, the Mark 2 clearly outperforms the 

Vantage Pro2 with reduced errors that are 

up to 9x better. It should be noted that the 

maximum relative humidity value observed 

by the Vantage Pro2 is only 91%, even 

though this data covers an entire year and 

certainly contains some hours of rain.

Figure 6. Relative humidity comparison at the Santa Rosa site using data from October 2019 through October 2020.



Figure 7 shows vapor pressure deficit 

for the Mark 2 and ATMOS 41 (y-axis) 

versus the reference Vaisala HUMICAP® 

HMP155 with helical radiation shield 

(x-axis). The ATMOS 41 does not provide 

relative humidity directly, but does provide 

vapor pressure deficit—a function of air 

temperature and relative humidity. Hence, 

this comparison is indirectly testing the 

accuracy of relative humidity, although 

notably the errors of air temperature 

will also be present. As evident from the 

figure, the Mark 2 slightly outperforms 

the ATMOS 41 with MBE deviating the 

most from -0.01 kPa (Mark 2) to -0.06 kPa 

(ATMOS 41).

Figure 7. Vapor pressure deficit comparison at the Santa Rosa site using data from October 2019 through October 2020.
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CONCLUSION

Based on the results outlined in this 

paper, it is clear that the Arable Mark 2 

is a competitive alternative to traditional 

weather stations on the market in terms 

of data accuracy. The Mark 2 was shown 

to compare well against and sometimes 

outperform the Davis Vantage Pro2 and 

METER ATMOS 41 across air temperature, 

precipitation, and relative humidity/

vapor pressure deficit using gold-standard 

reference devices as a benchmark. In 

particular, the Mark 2 was the most accurate 

of the three within the freezing range of air 

temperature, across all relative humidity/

vapor pressure deficit measurements, and 

at one of the two rainfall sites studied. At 

this site, the ATMOS 41 and Vantage Pro2 

lagged behind the Mark 2 with percentage 

errors that were roughly 32x and 60x worse, 

respectively. We attribute this success to our 

novel approach to measuring precipitation 

that avoids some of the typical sources of 

error that traditional methods are subject to.

 As a leader in weather and crop 

monitoring technology and data analytics, 

Arable is committed to providing powerful, 

yet affordable tools to stakeholders across 

the agricultural spectrum. Our development 

cycles are not constrained to simply newer 

and more expensive hardware, but are also 

focused on regular software releases that 

contain automated ML model updates that 

maximize performance across all of our 

feature offerings. This is not only a more 

flexible and sustainable way of developing 

and building technologies, but it is less 

expensive and allows us to produce more 

affordable products. 

The key takeaway is that our innovative 

strategies, particularly our use of ML, propel 

the continual enhancement of existing 

and future Arable products. As we collect 

more data through the Cal/Val network, 

our accuracy improves, allowing us to build 

smarter models that facilitate better data-

driven agricultural decisions. Put simply, 

we get better and better over time. In this 

paper, we have seen the success that these 

models have already achieved to date, noting 

that they will only continue to improve and 

set new standards for weather and crop 

monitoring. While this paper specifically 

covers the application of ML to our core 

measurement base, these core measurements 

are the foundation of our derived agronomic 

models which are key to practical, informed 

agronomic decision-making.
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